Copied to
clipboard

G = C24.89D4order 128 = 27

44th non-split extension by C24 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C24.89D4, C23.19SD16, (C2×C8).164D4, C2.22(C88D4), C2.22(C8⋊D4), C23.932(C2×D4), (C22×C4).162D4, C22.4Q1631C2, C4.56(C4.4D4), C4.20(C422C2), C22.124(C4○D8), (C23×C4).277C22, (C22×C8).325C22, C22.105(C2×SD16), C23.7Q8.22C2, C22.253(C4⋊D4), C22.152(C8⋊C22), (C22×C4).1466C23, C2.8(C23.46D4), C2.8(C23.47D4), C4.112(C22.D4), C2.12(C23.19D4), C2.12(C23.20D4), C2.12(C23.11D4), C22.141(C8.C22), C22.122(C22.D4), (C2×C4.Q8)⋊23C2, (C2×C4).1375(C2×D4), (C2×C22⋊C8).38C2, (C2×C4).628(C4○D4), (C2×C4⋊C4).151C22, SmallGroup(128,809)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — C24.89D4
C1C2C22C2×C4C22×C4C2×C4⋊C4C23.7Q8 — C24.89D4
C1C2C22×C4 — C24.89D4
C1C23C23×C4 — C24.89D4
C1C2C2C22×C4 — C24.89D4

Generators and relations for C24.89D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=db=bd, eae-1=ab=ba, ac=ca, ad=da, faf-1=abc, bc=cb, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e3 >

Subgroups: 288 in 128 conjugacy classes, 48 normal (44 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C23, C23, C23, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C24, C2.C42, C22⋊C8, C4.Q8, C2×C22⋊C4, C2×C4⋊C4, C22×C8, C23×C4, C22.4Q16, C23.7Q8, C2×C22⋊C8, C2×C4.Q8, C24.89D4
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C4⋊D4, C22.D4, C4.4D4, C422C2, C2×SD16, C4○D8, C8⋊C22, C8.C22, C23.11D4, C88D4, C8⋊D4, C23.46D4, C23.19D4, C23.47D4, C23.20D4, C24.89D4

Smallest permutation representation of C24.89D4
On 64 points
Generators in S64
(2 20)(4 22)(6 24)(8 18)(9 58)(10 40)(11 60)(12 34)(13 62)(14 36)(15 64)(16 38)(26 50)(28 52)(30 54)(32 56)(33 48)(35 42)(37 44)(39 46)(41 61)(43 63)(45 57)(47 59)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 46)(10 47)(11 48)(12 41)(13 42)(14 43)(15 44)(16 45)(25 49)(26 50)(27 51)(28 52)(29 53)(30 54)(31 55)(32 56)(33 60)(34 61)(35 62)(36 63)(37 64)(38 57)(39 58)(40 59)
(1 51)(2 52)(3 53)(4 54)(5 55)(6 56)(7 49)(8 50)(9 39)(10 40)(11 33)(12 34)(13 35)(14 36)(15 37)(16 38)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(41 61)(42 62)(43 63)(44 64)(45 57)(46 58)(47 59)(48 60)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 9 23 42)(2 12 24 45)(3 15 17 48)(4 10 18 43)(5 13 19 46)(6 16 20 41)(7 11 21 44)(8 14 22 47)(25 60 53 37)(26 63 54 40)(27 58 55 35)(28 61 56 38)(29 64 49 33)(30 59 50 36)(31 62 51 39)(32 57 52 34)

G:=sub<Sym(64)| (2,20)(4,22)(6,24)(8,18)(9,58)(10,40)(11,60)(12,34)(13,62)(14,36)(15,64)(16,38)(26,50)(28,52)(30,54)(32,56)(33,48)(35,42)(37,44)(39,46)(41,61)(43,63)(45,57)(47,59), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,60)(34,61)(35,62)(36,63)(37,64)(38,57)(39,58)(40,59), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,49)(8,50)(9,39)(10,40)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(41,61)(42,62)(43,63)(44,64)(45,57)(46,58)(47,59)(48,60), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,9,23,42)(2,12,24,45)(3,15,17,48)(4,10,18,43)(5,13,19,46)(6,16,20,41)(7,11,21,44)(8,14,22,47)(25,60,53,37)(26,63,54,40)(27,58,55,35)(28,61,56,38)(29,64,49,33)(30,59,50,36)(31,62,51,39)(32,57,52,34)>;

G:=Group( (2,20)(4,22)(6,24)(8,18)(9,58)(10,40)(11,60)(12,34)(13,62)(14,36)(15,64)(16,38)(26,50)(28,52)(30,54)(32,56)(33,48)(35,42)(37,44)(39,46)(41,61)(43,63)(45,57)(47,59), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,60)(34,61)(35,62)(36,63)(37,64)(38,57)(39,58)(40,59), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,49)(8,50)(9,39)(10,40)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(41,61)(42,62)(43,63)(44,64)(45,57)(46,58)(47,59)(48,60), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,9,23,42)(2,12,24,45)(3,15,17,48)(4,10,18,43)(5,13,19,46)(6,16,20,41)(7,11,21,44)(8,14,22,47)(25,60,53,37)(26,63,54,40)(27,58,55,35)(28,61,56,38)(29,64,49,33)(30,59,50,36)(31,62,51,39)(32,57,52,34) );

G=PermutationGroup([[(2,20),(4,22),(6,24),(8,18),(9,58),(10,40),(11,60),(12,34),(13,62),(14,36),(15,64),(16,38),(26,50),(28,52),(30,54),(32,56),(33,48),(35,42),(37,44),(39,46),(41,61),(43,63),(45,57),(47,59)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,46),(10,47),(11,48),(12,41),(13,42),(14,43),(15,44),(16,45),(25,49),(26,50),(27,51),(28,52),(29,53),(30,54),(31,55),(32,56),(33,60),(34,61),(35,62),(36,63),(37,64),(38,57),(39,58),(40,59)], [(1,51),(2,52),(3,53),(4,54),(5,55),(6,56),(7,49),(8,50),(9,39),(10,40),(11,33),(12,34),(13,35),(14,36),(15,37),(16,38),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(41,61),(42,62),(43,63),(44,64),(45,57),(46,58),(47,59),(48,60)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,9,23,42),(2,12,24,45),(3,15,17,48),(4,10,18,43),(5,13,19,46),(6,16,20,41),(7,11,21,44),(8,14,22,47),(25,60,53,37),(26,63,54,40),(27,58,55,35),(28,61,56,38),(29,64,49,33),(30,59,50,36),(31,62,51,39),(32,57,52,34)]])

32 conjugacy classes

class 1 2A···2G2H2I4A4B4C4D4E4F4G···4N8A···8H
order12···2224444444···48···8
size11···1442222448···84···4

32 irreducible representations

dim1111122222244
type+++++++++-
imageC1C2C2C2C2D4D4D4C4○D4SD16C4○D8C8⋊C22C8.C22
kernelC24.89D4C22.4Q16C23.7Q8C2×C22⋊C8C2×C4.Q8C2×C8C22×C4C24C2×C4C23C22C22C22
# reps13211211104411

Matrix representation of C24.89D4 in GL6(𝔽17)

100000
4160000
001000
0011600
000010
0000016
,
1600000
0160000
001000
000100
000010
000001
,
100000
010000
0016000
0001600
0000160
0000016
,
100000
010000
001000
000100
0000160
0000016
,
1320000
040000
001000
000100
000020
000008
,
180000
4160000
0011500
0001600
000008
000020

G:=sub<GL(6,GF(17))| [1,4,0,0,0,0,0,16,0,0,0,0,0,0,1,1,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[13,0,0,0,0,0,2,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,8],[1,4,0,0,0,0,8,16,0,0,0,0,0,0,1,0,0,0,0,0,15,16,0,0,0,0,0,0,0,2,0,0,0,0,8,0] >;

C24.89D4 in GAP, Magma, Sage, TeX

C_2^4._{89}D_4
% in TeX

G:=Group("C2^4.89D4");
// GroupNames label

G:=SmallGroup(128,809);
// by ID

G=gap.SmallGroup(128,809);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,560,141,422,387,58,718,172]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=d*b=b*d,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,f*a*f^-1=a*b*c,b*c=c*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^3>;
// generators/relations

׿
×
𝔽